ON COMPLEMENTED SUBSPACES OF m

BY

JORAM LINDENSTRAUSS*

ABSTRACT

It is proved that an infinite dimensional subspace of m is complemented in m if and only if it is isomorphic to m.

Let Y be a Banach space and let X be a closed linear subspace of Y. We say that X is complemented in Y if there is a bounded linear projection from Y onto X. A Banach space is called a \mathfrak{P} space if it is complemented in every Banach space containing it. For a set Γ let $m(\Gamma)$ denote the space of bounded scalar-valued functions on Γ with the supremum norm. Since every Banach space is isometric to a subspace of $m(\Gamma)$ for a suitable Γ and since every $m(\Gamma)$ is a \mathfrak{P} space it is easily seen and well known (cf. [3, p. 94]) that a Banach space X is a \mathfrak{P} space if and only if X is isomorphic to a complemented subspace of some $m(\Gamma)$. The question of functional representation of \mathfrak{P} spaces has been considered by many authors but is still open. The main known results in this direction are contained in [5] and its references. The purpose of the present note is to settle the question of the structure of the complemented subspaces of $m(\Gamma)$ if Γ is countably infinite (for this Γ we denote, as usual, $m(\Gamma)$ by m).

THEOREM. An infinite dimensional subspace X of m is complemented in m if and only if X is isomorphic to m.

The *if* part of the theorem is trivial since *m* is a \mathfrak{P} space. The theorem answers a question of Pełczyński [5] (cf. also [2]). Pełczyński proved in [5] a result similar to the *only if* part of the theorem for l_p , $1 \leq p < \infty$, and c_0 . We shall use in the proof of our theorem the following two results of Pełczyński.

LEMMA 1. Let X be an infinite dimensional \mathfrak{P} space. Then X contains a subspace isomorphic to c_0

For a proof see [5, p. 222] or [6].

LEMMA 2. Let X be a complemented subspace of m and assume that X has a subspace isomorphic to m. Then X is isomorphic to m.

Received June 9, 1967.

^{*} The research reported in this document has been sponsored by the Air Force Office of Scientific Research under Grant AF EOAR 66-18, through the European Office of Aerospace Research (OAR) United States Air Force.

For a proof see [5, p. 222].

We do not use essentially new methods here. Lemma 5 below is closely related to the paper [1] of Bessaga and Pełczyński. In the proof of the theorem itself we use an idea of Nakamura and Kakutani [4] (cf. also [7] and [8]). Our approach can be used to get some information on general \mathfrak{P} spaces. We do not, however, treat general \mathfrak{P} spaces here since it seems that the solution of the problem of characterizing general \mathfrak{P} spaces will need other methods. Our reason for believing this is the observation in [5, p. 223] that there are \mathfrak{P} spaces which are not isomorphic to $m(\Gamma)$ for any Γ .

By the w^* topology of m we understand the topology induced on m by the elements of l_1 . For $x \in m$ and an integer i, x(i) denotes the *i*-th coordinate of x. For $x \in m$ and $\varepsilon > 0$ we put $N(x, \varepsilon) = \{i; |x(i)| > \varepsilon\}$ and $M(x, \varepsilon) = \{i; |x(i)| \le \varepsilon\}$. The scalar field (real or complex) is denoted by R.

LEMMA 3. Let $\{x_k\}_{k=1}^{\infty}$ be a sequence of elements in m such that for some constant K

(1)
$$\left\|\sum_{k=1}^{n} \lambda_k x_k\right\| \leq K \sup_k \left|\lambda_k\right| \quad for \ all \ \{\lambda_k\}_{k=1}^{n} \subset R, \qquad n = 1, 2, \cdots.$$

Then for every bounded sequence $\{\lambda_k\}_{k=1}^{\infty} \subset R$ the series $\sum_{k=1}^{\infty} \lambda_k x_k$ converges in the w* topology to an element of norm $\leq K \sup_k |\lambda_k|$ in m.

Proof. Obvious.

LEMMA 4. Let $\{x_k\}_{k=1}^{\infty}$ be a sequence of elements in m such that (1) holds and such that for some H > 0

$$\|x_k\| \ge H \qquad k = 1, 2, \cdots.$$

Then for every $\varepsilon > 0$ and $\theta < H$ there is an index k such that

(3)
$$A_k = \{h; M(x_k, \varepsilon) \cap N(x_h, \theta) \neq \emptyset\}$$

is an infinite set.

Proof. By (1) we get that for every i, $\sum_{k} |x_{k}(i)| \leq K$ and hence the intersection of $r > K/\varepsilon$ of sets of the form $N(x_{k},\varepsilon)$ is empty. Assume that A_{k} , $k = 1, \dots, r$, are finite sets. Then $A = \bigcup_{k=1}^{r} A_{k}$ is a finite set. For $h \notin A$, $N(x_{h},\theta) \subset \bigcap_{k=1}^{r} N(x_{k},\varepsilon) = \emptyset$ but this contradicts (2).

LEMMA 5. Let $\{x_k\}_{k=1}^{\infty}$ be a sequence of elements in m such that (1) holds and $||x_k|| > 2$ for every k. Then there is a subsequence $\{x_{n_k}\}$ of $\{x_k\}$ such that

(4)
$$\sup_{k} |\lambda_{k}| \leq \|\sum_{k=1}^{\infty} \lambda_{k} x_{n_{k}}\| \leq K \sup_{k} |\lambda_{k}|,$$

ON COMPLEMENTED SUBSPACES OF m

for every bounded sequence $\{\lambda_k\}_{k=1}^{\infty}$ of scalars.

Proof. The right inequality of (4) is valid for every subsequence $\{x_{n_k}\}$ by Lemma 3, so we have to consider only the left inequality of (4).

By Lemma 4 there is an n_1 so that $B_1 = \{h; M(x_{n_1}, 1/4) \cap N(x_h, 7/4) \neq \emptyset\}$ is infinite. Next we choose an integer i_1 such that $|x_{n_1}(i_1)| \ge 2$. Since $\sum_{k=1}^{\infty} |x_k(i_1)| \le K$ there is an infinite subset C_1 of B_1 such that $\sum_{k \in C_1} |x_k(i_1)| < 1/4$. The set $M_1 = M(x_{n_1}, 1/4)$ is an infinite set. Indeed, otherwise we would have an infinite number of $h \in B_1$ such that $|x_h(i)| \ge 7/4$ for some fixed $i \in M_1$ and this contradicts the fact that $\sum_h |x_h(i)| \le K$. Let $x_{k,1}$ be the restriction of x_k to M_1 , $k = 1, 2, \cdots$ (i.e. $x_{k,1}(i)$ is defined only for $i \in M_1$ and for these $i, x_{k,1}(i) = x_k(i)$). By the definition of $M_1, ||x_{k,1}|| > 7/4$ for $k \in B_1$ and hence for $k \in C_1$. By applying Lemma 4 to $\{x_{k,1}\}_{k \in C_1}$ we get an $n_2 \in C_1$ such that

$$B_2 = C_1 \cap \{h; M_1 \cap M(x_{n_2}, 1/4^2) \cap N(x_h, 7/4 - 1/4^2) \neq \emptyset\}$$

is an infinite set. Let $i_2 \in M_1$ be such that $|x_{n_2}(i_2)| \ge 7/4$ and let C_2 be an infinite subset of B_2 such that $\sum_{k \in C_2} |x_k(i_2)| < 1/4^2$. Set $M_2 = M_1 \cap M(x_{n_2}, 1/4^2)$ and $x_{k,2}$ the restriction of x_k to M_2 , $k = 1, 2, \cdots$. Continuing inductively we get a subsequence $\{x_{n_k}\}$ of $\{x_k\}$ and a sequence of integers i_k such that

(5)
$$|x_{n_k}(i_k)| \ge 2 - 1/4 - \dots - 1/4^{k-1} > 5/3$$

(6)
$$\sum_{k=j+1}^{\infty} \left| x_{n_k}(i_j) \right| \leq 1/4^j$$

(7)
$$|x_{n_k}(i_j)| \leq 1/4^k$$
 for $j > k$

By (6) and (7) $\sum_{k \neq j} |x_{n_k}(i_j)| < 1/3$. Let now $\{\lambda_k\}_{k=1}^{\infty}$ be any sequence of scalars such that $\sup_k |\lambda_k| = 1$ and let j be such that $|\lambda_j| > 4/5$. Then

$$\begin{split} \left\|\sum_{k=1}^{\infty} \lambda_k x_{n_k}\right\| &\geq \left|\sum_{k=1}^{\infty} \lambda_k x_{n_k}(i_j)\right| \geq \left|\lambda_j\right| \left|x_{n_j}(i_j)\right| - \sum_{k \neq j} \left|\lambda_k\right| \left|x_{n_k}(i_j)\right| \\ &\geq 5 \left|\lambda_j\right| / 3 - \sum_{k \neq j} \left|x_{n_k}(i_j)\right| \geq 1, \end{split}$$

and this concludes the proof of the lemma.

Proof of the theorem. Let X be an infinite dimensional complemented subspace of m. By Lemma 1 X contains a subspace isomorphic to c_0 . By Lemma 5 it follows that there is a sequence $\{x_k\}_{k=1}^{\infty}$ in X and a constant K such that $\sup_k |\lambda_k| \leq \leq ||\sum_{k=1}^{\infty} \lambda_k x_k|| \leq K \sup_k |\lambda_k|$ for every bounded sequence of scalars $\{\lambda_k\}_{k=1}^{\infty}$. (The series $\sum \lambda_k x_k$ converges in the w* topology).

Let $\{N_{\gamma}\}_{\gamma \in \Gamma}$ be an uncountable collection of infinite subsets of the integers such that $N_{\beta} \cap N_{\gamma}$ is finite whenever $\beta \neq \gamma$. The existence of such a set is well

155

1967]

J. LINDENSTRAUSS

known (cf. [7], [8] and the references there). For each $\gamma \in \Gamma$ let X_{γ} be the subspace of *m* consisting of the elements of the form $\sum_{k \in N_{\gamma}} \lambda_k x_k$ where $\{\lambda_k\}_{k \in N_{\gamma}}$ is a bounded set of scalars. Clearly every X_{γ} is isomorphic to *m*. We shall prove that $X_{\gamma} \subset X$ for some γ and this will conclude the proof of the theorem (by Lemma 2).

Let $\phi: m \to m/X$ be the quotient map. Since X is complemented in m, m/X is isomorphic to a subspace of m. Hence there is a countable set of functionals $\{f_j\}_{j=1}^{\infty}$ in $(m/X)^*$ such that $f_j(u) = 0$ for every j ($u \in m/X$) implies u = 0. Assume that for every $\gamma \in \Gamma$ there is an $x_{\gamma} = \sum_{k \in N_{\gamma}} \lambda_k^{\gamma} x_k$ such that $||x_{\gamma}|| = 1$ and $x_{\gamma} \notin X$ i.e. $\phi(x_{\gamma}) \neq 0$. We claim that for every choice of signs ε_i and every finite set $\{x_{\gamma_i}\}_{i=1}^{n}$

(8)
$$\left\|\sum_{i=1}^{n}\varepsilon_{i}\phi(x_{\gamma_{i}})\right\| \leq K.$$

Indeed, by our assumption on the N_{γ} there is a finite set M_0 such that $N_{\gamma_i} \subset M_0 \cup M_i$, $i = 1, \dots, n$, and $M_i \cap M_k = \emptyset$ for $i \neq k$. Put, for $i = 1, \dots, n$, $x_{\gamma_i} = y_i + z_i$ where $y_i = \sum_{k \in M_0} \lambda_k^{\gamma_i} x_k$ and $z_i = \sum_{k \in M_i} \lambda_k^{\gamma_i} x_k$. Every y_i belongs to X and hence $\phi(x_{\gamma_i}) = \phi(z_i)$. Since $\|\sum_{i=1}^n \varepsilon_i z_i\| \leq K$ for every choice of signs we get (8).

From (8) it follows that for every $f \in (m/X)^*$, $\sum_{\gamma} |f(\phi(x_{\gamma}))| \leq K ||f||$ and in particular there is only a countable set of $\gamma \in \Gamma$ such that $f(\phi(x_{\gamma})) \neq 0$. It follows that there is only a countable number of $\gamma \in \Gamma$ such that $f_j(\phi(x_{\gamma})) \neq 0$ for some j and this contradicts our choice of the f_j and the assumption that $\phi(x_{\gamma}) \neq 0$ for every γ .

REFERENCES

1. C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.

2. W. J. Davis and D. W. Dean, The direct sum of Banach spaces with respect to a basis, Studia Math. 28 (1967), 209-219.

3. M. M. Day, Normed Linear Spaces, Springer Verlag, Berlin 1958.

4. M. Nakamura and S. Kakutani, Banach limits and the Čech compactification of a countable discrete set, Proc. Imp. Acad. Japan, 19 (1943), 224-229.

5. A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228.

6. A. Pełczyński, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Pol. Sci., 12 (1962), 641-648.

7. A. Pełczyński and V. N. Sudakov, Remark on non-complemented subspaces of the space m(S), Colloq. Math. 9 (1962), 85-88.

8. R. Whitley, Projecting m onto c₀, Amer. Math. Monthly 73 (1966), 285-286.

THE HEBREW UNIVERSITY OF JERUSALEM.