ON COMPLEMENTED SUBSPACES OF m

BY

JORAM LINDENSTRAUSS*

ABSTRACT

It is proved that an infinite dimensional subspace of m is complemented in m if and only if it is isomorphic to m .

Let Y be a Banach space and let X be a closed linear subspace of Y. We say that X is complemented in Y if there is a bounded linear projection from Y onto X. A Banach space is called a $\mathfrak P$ space if it is complemented in every Banach space containing it. For a set Γ let $m(\Gamma)$ denote the space of bounded scalar-valued functions on Γ with the supremum norm. Since every Banach space is isometric to a subspace of $m(\Gamma)$ for a suitable Γ and since every $m(\Gamma)$ is a $\mathfrak P$ space it is easily seen and well known (cf. [3, p. 94]) that a Banach space X is a $\mathfrak P$ space if and only if X is isomorphic to a complemented subspace of some $m(\Gamma)$. The question of functional representation of $\mathfrak P$ spaces has been considered by many authors but is still open. The main known results in this direction are contained in [5] and its references. The purpose of the present note is to settle the question of the structure of the complemented subspaces of $m(\Gamma)$ if Γ is countably infinite (for this Γ we denote, as usual, $m(\Gamma)$ by m).

THEOREM. *An infinite dimensional subspace X of m is complemented in m if and only if X is isomorphic to m.*

The *if* part of the theorem is trivial since m is a $\mathfrak P$ space. The theorem answers a question of Pelczyfiski [5] (cf. also [2]). Pelczyfiski proved in [5] a result similar to the *only if* part of the theorem for l_p , $1 \leq p < \infty$, and c_0 . We shall use in the proof of our theorem the following two results of Pelczyfiski.

LEMMA 1. Let X be an infinite dimensional $\mathfrak P$ space. Then X contains a *subspace isomorphic to Co*

For a proof see [5, p. 222] or [6].

LEMMA 2. *Let X be a complemented subspace of m and assume that X has a subspace isomorphic to m. Then X is isomorphic to m.*

Received June 9, 1967.

^{*} The research reported in this document has been sponsored by the Air Force Office of Scientific Research under Grant AF EOAR 66-18, through the European Office of Aerospace Research (OAR) United States Air Force.

For a proof see $[5, p. 222]$.

We do not use essentially new methods here. Lemma 5 below is closely related to the paper [1] of Bessaga and Petczyfiski. In the proof of the theorem itself we use an idea of Nakamura and Kakutani [4] (cf. also [7] and [8]). Our approach can be used to get some information on general $\mathfrak P$ spaces. We do not, however, treat general $\mathfrak B$ spaces here since it seems that the solution of the problem of characterizing general $\mathfrak P$ spaces will need other methods. Our reason for believing this is the observation in [5, p. 223] that there are $\mathfrak P$ spaces which are not isomorphic to $m(\Gamma)$ for any Γ .

By the w^* topology of m we understand the topology induced on m by the elements of l_1 . For $x \in m$ and an integer i, $x(i)$ denotes the *i*-th coordinate of x. For $x \in m$ and $\varepsilon > 0$ we put $N(x, \varepsilon) = \{i; |x(i)| > \varepsilon\}$ and $M(x, \varepsilon) = \{i; |x(i)| \leq \varepsilon\}.$ The scalar field (real or complex) is denoted by R.

LEMMA 3. Let ${x_k}_{k=1}^{\infty}$ be a sequence of elements in m such that for some *constant K*

$$
(1) \qquad \|\sum_{k=1}^n \lambda_k x_k\| \leq K \sup_k |\lambda_k| \quad \text{for all } \{\lambda_k\}_{k=1}^n \subset R, \qquad n=1,2,\cdots.
$$

Then for every bounded sequence $\{\lambda_k\}_{k=1}^{\infty} \subset R$ the series $\sum_{k=1}^{\infty} \lambda_k x_k$ converges *in the w* topology to an element of norm* $\leq K \sup_k |\lambda_k|$ *in m.*

Proof. Obvious.

LEMMA 4. Let $\{x_k\}_{k=1}^{\infty}$ be a sequence of elements in m such that (1) holds *and such that for some H > 0*

$$
\|x_k\| \ge H \qquad k = 1, 2, \cdots.
$$

Then for every $\varepsilon > 0$ *and* $\theta < H$ *there is an index k such that*

(3)
$$
A_k = \{h; M(x_k, \varepsilon) \cap N(x_h, \theta) \neq \emptyset\}
$$

is an infinite set.

Proof. By (1) we get that for every $i, \sum_{k} |x_{k}(i)| \leq K$ and hence the intersection of $r > K/\varepsilon$ of sets of the form $N(x_k, \varepsilon)$ is empty. Assume that A_k , $k = 1, \dots, r$, are finite sets. Then $A = \int_{k=1}^{r} A_k$ is a finite set. For $h \notin A$, $N(x_h, \theta) \subset \bigcap_{k=1}^{r} N(x_k, \epsilon) = \emptyset$ but this contradicts (2).

LEMMA 5. Let ${x_k}_{k=1}^{\infty}$ be a sequence of elements in m such that (1) holds *and* $||x_k|| > 2$ for *every k. Then there is a subsequence* $\{x_{n_k}\}\text{ of } \{x_k\}$ *such that*

(4)
$$
\sup_{k} |\lambda_{k}| \leq \|\sum_{k=1}^{\infty} \lambda_{k} x_{n_{k}}\| \leq K \sup_{k} |\lambda_{k}|,
$$

for every bounded sequence $\{\lambda_k\}_{k=1}^{\infty}$ of scalars.

Proof. The right inequality of (4) is valid for every subsequence $\{x_{n}\}\$ by Lemma 3, so we have to consider only the left inequality of (4).

By Lemma 4 there is an n_1 so that $B_1 = \{h; M(x_n,1/4) \cap N(x_h,7/4) \neq \emptyset\}$ is infinite. Next we choose an integer i_1 such that $|x_{n_1}(i_1)| \geq 2$. Since $\sum_{k=1}^{\infty} |x_k(i_1)| \leq K$ there is an infinite subset C_1 of B_1 such that $\sum_{k \in C_1} |x_k(i_1)| < 1/4$. The set $M_1 = M(x_n, 1/4)$ is an infinite set. Indeed, otherwise we would have an infinite number of $h \in B_1$ such that $|x_h(i)| \ge 7/4$ for some fixed $i \in M_1$ and this contradicts the fact that $\sum_h |x_h(i)| \leq K$. Let $x_{k,1}$ be the restriction of x_k to M_1 , $k = 1, 2, \dots$ (i.e. $x_{k,1}(i)$ is defined only for $i \in M_1$ and for these i, $x_{k,1}(i) = x_k(i)$). By the definition of M_1 , $\|x_{k,1}\| > 7/4$ for $k \in B_1$ and hence for $k \in C_1$. By applying Lemma 4 to ${x_{k,1}}_{k \in C_1}$ we get an $n_2 \in C_1$ such that

$$
B_2 = C_1 \cap \{h; M_1 \cap M(x_{n_2}, 1/4^2) \cap N(x_h, 7/4 - 1/4^2) \neq \emptyset\}
$$

is an infinite set. Let $i_2 \in M_1$ be such that $|x_{n_2}(i_2)| \geq 7/4$ and let C_2 be an infinite subset of B_2 such that $\sum_{k \in C_2} |x_k(i_2)| < 1/4^2$. Set $M_2 = M_1 \cap M(x_{n_2}, 1/4^2)$ and $x_{k,2}$ the restriction of x_k to M_2 , $k = 1, 2, \dots$. Continuing inductively we get a subsequence $\{x_{n_k}\}$ of $\{x_k\}$ and a sequence of integers i_k such that

(5)
$$
\left| x_{n_k}(i_k) \right| \geq 2 - 1/4 - \dots - 1/4^{k-1} > 5/3
$$

(6)
$$
\sum_{k=j+1}^{\infty} |x_{n_k}(i_j)| \leq 1/4^j
$$

(7)
$$
\left| x_{n_k}(i_j) \right| \leq 1/4^k \quad \text{for } j > k
$$

By (6) and (7) $\sum_{k \neq j} |x_{n_k}(i_j)| < 1/3$. Let now $\{\lambda_k\}_{k=1}^{\infty}$ be any sequence of scalars such that $\sup_k |\lambda_k| = 1$ and let j be such that $|\lambda_j| > 4/5$. Then

$$
\|\sum_{k=1}^{\infty} \lambda_k x_{n_k}\| \geq \|\sum_{k=1}^{\infty} \lambda_k x_{n_k}(i_j)\| \geq |\lambda_j| \left| x_{n_j}(i_j)\right| - \sum_{k \neq j} |\lambda_k| \left| x_{n_k}(i_j)\right|
$$

$$
\geq 5 \left| \lambda_j \right| / 3 - \sum_{k \neq j} |x_{n_k}(i_j)| \geq 1,
$$

and this concludes the proof of the lemma.

Proof of the theorem. Let X be an infinite dimensional complemented subspace of m. By Lemma 1 X contains a subspace isomorphic to c_0 . By Lemma 5 it follows that there is a sequence ${x_k}_{k=1}^{\infty}$ in X and a constant K such that $\sup_k |\lambda_k| \leq$ \leq $\|\sum_{k=1}^{\infty} \lambda_k x_k \| \leq K \sup_k |\lambda_k|$ for every bounded sequence of scalars $\{\lambda_k\}_{k=1}^{\infty}$. (The series $\sum \lambda_k x_k$ converges in the w^{*} topology).

Let ${N_r}_{r \in \Gamma}$ be an uncountable collection of infinite subsets of the integers such that $N_{\beta} \cap N_{\gamma}$ is finite whenever $\beta \neq \gamma$. The existence of such a set is well

156 J. LINDENSTRAUSS [July

known (cf. [7], [8] and the references there). For each $\gamma \in \Gamma$ let X_{γ} be the subspace of *m* consisting of the elements of the form $\sum_{k \in N_{\nu}} \lambda_k x_k$ where $\{\lambda_k\}_{k \in N_{\nu}}$ is a bounded set of scalars. Clearly every X_y is isomorphic to m. We shall prove that $X_y \subset X$ for some γ and this will conclude the proof of the theorem (by Lemma 2).

Let $\phi : m \to m/X$ be the quotient map. Since X is complemented in *m, m/X* is isomorphic to a subspace of m. Hence there is a countable set of functionals ${f_i}_{i=1}^{\infty}$ in $(m/X)^*$ such that $f_i(u) = 0$ for every j $(u \in m/X)$ implies $u = 0$. Assume that for every $\gamma \in \Gamma$ there is an $x_{\gamma} = \sum_{k \in N_{\gamma}} \lambda_k^{\gamma} x_k$ such that $||x_{\gamma}|| = 1$ and $x_{\gamma} \notin X$ i.e. $\phi(x_y) \neq 0$. We claim that for every choice of signs ε_i and every finite set $\{x_{y_i}\}_{i=1}^n$

(8)
$$
\|\sum_{i=1}^n \varepsilon_i \phi(x_{\gamma_i})\| \leq K.
$$

Indeed, by our assumption on the N_y there is a finite set $M₀$ such that $N_{\gamma_i} \subset M_0 \cup M_i$, $i = 1, \dots, n$, and $M_i \cap M_k = \emptyset$ for $i \neq k$. Put, for $i = 1, \dots, n$, $x_{y_i} = y_i + z_i$ where $y_i = \sum_{k \in M_0} \lambda_k^{i} x_k$ and $z_i = \sum_{k \in M_i} \lambda_k^{i} x_k$. Every y_i belongs to X and hence $\phi(x_y) = \phi(z_i)$. Since $||\sum_{i=1}^n \varepsilon_i z_i|| \leq K$ for every choice of signs we get (8).

From (8) it follows that for every $f \in (m/X)^*, \sum_{\nu} |f(\phi(x_{\nu}))| \leq K \|f\|$ and in particular there is only a countable set of $\gamma \in \Gamma$ such that $f(\phi(x_{\gamma})) \neq 0$. It follows that there is only a countable number of $\gamma \in \Gamma$ such that $f_i(\phi(x_i)) \neq 0$ for some j and this contradicts our choice of the f_j and the assumption that $\phi(x_j) \neq 0$ for every γ.

REFERENCES

1. C. Bessaga and A. Pelczyfiski, *On bases and unconditional convergence of series in Banach spaces,* Studia Math. 17 (1958), 151-164.

2. W. J. Davis and D. W. Dean, The *direct sum of Banach spaces with respect to a basis,* Studia Math. 28 (1967), 209-219.

3. M. M. Day, *NormedLincar Spaces,* Springer Verlag, Berlin 1958.

v 4. M. Nakamura and S. Kakutani, *Banach limits and the Cech compactification of a countable discrete set,* Proc. Imp. Acad. Japan, 19 (1943), 224-229.

5. A. Pe|czyfiski, *Projections in certain Banach spaces,* Studia Math. 19 (1960), 209-228.

6. A. Petczy6ski, *Banach spaces on which every unconditionally converging operator is weakly compact,* Bull. Acad. Pol. Sci., 12 (1962), 641-648.

7. A. Pelczyfiski and V. N. Sudakov, *Remark on non-complemented subspaces of the space* m(S), Colloq. Math. 9 (1962), 85-88.

8. R. Whitley, *Projecting m onto* co, Amer. Math. Monthly 73 (1966), 285-286.

THE HEBREW UNIVERSITY OF JERUSALEM.