ON COMPLEMENTED SUBSPACES OF m

BY
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ABSTRACT

1t is proved that an infinite dimensional subspace of m is complemented in
m if and only if it is isomorphic to m.

Let Y be a Banach space and let X be a closed linear subspace of Y. We say
that X is complemented in Yif there is a bounded linear projection from Yonto X.
A Banach space is called a  space if it is complemented in every Banach space
containing it. For a set I" let m(I') denote the space of bounded scalar-valued
functions on I" with the supremum norm. Since every Banach space is isometric
to a subspace of m(I') for a suitable I" and since every m(I') is a P space it is
easily seen and well known (cf. [3, p. 94]) that a Banach space X is a P space if
and only if X is isomorphic to a complemented subspace of some m(I'). The
question of functional representation of 8 spaces has been considered by many
authors but is still open. The main known results in this direction are contained
in [5] and its references. The purpose of the present note is to settle the question
of the structure of the complemented subspaces of m(I') if I is countably infinite
(for this I we denote, as usual, m(I') by m).

THEOREM. An infinite dimensional subspace X of m is complemented in m
if and only if X is isomorphic to m.

The if part of the theorem is trivial since m is a [ space. The theorem answers
a question of Pelczynski [5] (cf. also [2]). Pelczynski proved in [5] a result similar
to the only if part of the theorem for [, 1 £ p < o, and c,. We shall use in the
proof of our theorem the following two results of Pelczyfiski.

LeMMA 1. Let X be an infinite dimensional P space. Then X contains a
subspace isomorphic to ¢,
For a proof see [5, p. 222] or [6].

LemMA 2. Let X be a complemented subspace of m and assume that X has
a subspace isomorphic to m. Then X is isomorphic to m.
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For a proof see [5, p. 222].

We do not use essentially new methods here. Lemma 5 below is closely
related to the paper [1] of Bessaga and Pefczynski. In the proof of the theorem
itself we use an idea of Nakamura and Kakutani [4] (cf. also [7] and [8]). Our
approach can be used to get some information on general § spaces. We do not,
however, treat general 3 spaces here since it seems that the solution of the problem
of characterizing general P spaces will need other methods. Our reason for be-
lieving this is the observation in [5, p. 223] that there are § spaces which are not
isomorphic to m(I') for any I'.

By the w* topology of m we understand the topology induced on m by the
elements of ;. For xem and an integer i, x(i) denotes the i-th coordinate of x.
For xem and &> 0 we put N(x,&) = {i;|x(i)] > £} and M(x,e) = {i;| x(})| < &}.
The scalar field (real or complex) is denoted by R.

LemMA 3. Let {x;}i=1 be a sequence of elements in m such that for some
constant K
6)) | £ Ax ] <Ksup|d| forall {4fi-y =R, n=12,-
k=1 k
Then for every bounded sequence {A}y=; = R the series T2, Ax, converges
in the w* topology to an element of norm < Ksupklzlk| in m.
Proof. Obvious.

LeMMa 4. Let {x;)i=1 be a sequence of elements in m such that (1) holds
and such that for some H >0

() |x]|zH k=12,--.

Then for every ¢ > 0 and 0 < H there is an index k such that
3) Ay = {h; M(x,,€) N N(x,, 0) # 8}

is an infinite set.

Proof. By (1) we get that for every i, ;| x(i)| < K and hence the intersection
of r > K|/e of sets of the form N(x,,¢) is empty. Assume that 4,, k=1,---,r, are
finite sets. Then A= {_J; -1 4y is a finite set. For h ¢ 4, N(x,,0) < k=1 N(x,) = &
but this contradicts (2).

LemMa 5. Let {x.}¢-; be a sequence of elements in m such that (1) holds
and " X " > 2 for every k. Then there is a subsequence {x, } of {x,} such that

4 SuPllkl s " z X, " -3 KSUPI}%I,
k k=1 k
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for every bounded sequence {4}~ of scalars.

Proof. The right inequality of (4) is valid for every subsequence {x,} by
Lemma 3, so we have to consider only the left inequality of (4).

By Lemma 4 there is an n; so that B; = {h; M(x,,,1/4) N\ N(x,,7/4) # #} is
infinite. Next we choose an integer i, such that|x, (i,)| 2. Since X2, |x,(i,)| K
there is an infinite subset C, of B, such that Zkec, |xk(i,)| < 1/4. The set
M = M(x,,, 1/4) is an infinite set. Indeed, otherwise we would have an infinite
number of h € B, such that l x,,(i)| Z 7/4 for some fixed i € M, and this contradicts
the fact that E,,] x,,(i)] < K. Let x; ; be the restriction of x;, to My, k =1,2, .-
(i.e. x;,; (i) is defined only for i € M, and for these i, x; ,(i) = x,(i)). By the definition
of My, ||x, (| > 7/4 for ke B, and hence for ke C;. By applying Lemma 4 to
{Xt. 13k cc, We get an n,eC, such that

B, = Cy N{h; My N M(x,,,1/4%) N\ N(x,,7/4 — 1]4%) # ¢}

is an infinite set. Let i, € M, be such that | x,,(i,)| 2 7/4 and let C, be an infinite
subset of B, such that X, .c,|x(i;)| < 1/4% Set M, = M, N M(x,,,1/4?) and
X; » the restriction of x, to My, k = 1,2, .-, Continuing inductively we get a sub-
sequence {x,,} of {x,} and a sequence of integers i, such that

By

) Ixnk(ik)l2-2—-1/4_...__1/4k—1>5/3
© L x| s 4

k=j+1
O | % G0)] < 1/4° for j>k

By (6) and (7) X,.;|x,,(i)| <1/3. Let now {4}7-, be any sequence of scalars
such that sup, | 4,| =1 and let j be such that | 4;| > 4/5. Then

”51 A | 2 I’El A )| Z |45 || xa i) | - Ei | 2] [ %,
z 5|43~ E |xi)| 21,
-y

and this concludes the proof of the lemma.

Proof of the theorem. Let X be an infinite dimensional complemented subspace
of m. By Lemma 1 X contains a subspace isomorphic to ¢,. By Lemma 5 it follows
that there is a sequence {x,};=; in X and a constant K such that supkllk[ =<
2| 224 Axi | £ Ksup,| 4| for every bounded sequence of scalars {4,}2,.
(The series X4,x, converges in the w* topology).

Let {N,}, .r be an uncountable collection of infinite subsets of the integers
such that Ny NN, is finite whenever f5£y. The existence of such a set is well
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known (cf. [7], [8] and the references there). For each y e I" Iet X, be the subspace
of m consisting of the elements of the form X, . w, 4% Where {4} e, is a bounded
set of scalars. Clearly every X, is isomorphic to m. We shall prove that X, « X
for some y and this will conclude the proof of the theorem (by Lemma 2).

Let ¢:m— m/X be the quotient map. Since X is complemented in m, m/X is
isomorphic to a subspace of m. Hence there is a countable set of functionals
{f;};=1in (mn/X)* such that fy(u) = 0 for every j (u € m/X) implies u = 0. Assume
that for every y e T there is an x, = X; .y Alx, such that |x,| =1 and x,¢ X
i.e. ¢(x,) #£ 0. We claim that for every choice of signs ¢; and every finite set {x,,};-,

® | £ ool sk

Indeed, by our assumption on the N, there is a finite set M, such that
N, cM,UM,, i=1,--,n, and MiNM, = Jfor i7#k. Put, for i=1,--,n,
X, = )i+ z; where y;= EkeMul,?xk and z;= ZkeMil,"‘xk. Every y; belongs to
X and hence ¢(x,) = ¢(z). Since || X7y &z;|| < K for every choice of signs we
get (8).

From (8) it follows that for every fe(m/X)*, X |f(¢(x,))| S K|f| and in
particular there is only a countable set of y €I" such that f(¢(x,)) # 0. It follows
that there is only a countable number of y e I" such that f(¢(x,)) # 0 for some j
and this contradicts our choice of the f; and the assumption that ¢(x,) # 0 for
every .
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