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ABSTRACT 

It is proved that an infinite dimensional subspace of m is complemented in 
rn if and only if it is isomorphic to m. 

Let Y be a Banach space and let X be a closed linear subspace of  Y. We say 
that X is complemented in Yif there is a bounded linear projection from Yonto X. 
A Banach space is called a ~ space if it is complemented in every Banach space 
containing it. For  a set F let re(F) denote the space of  bounded scalar-valued 
functions on F with the supremum norm. Since every Banach space is isometric 
to a subspace of m(F) for a suitable F and since every re(F) is a ~ space it is 
easily seen and well known (cf. [3, p. 94]) that a Banach space X is a ~ space if 
and only if X is isomorphic to a complemented subspace of  some m(F). The 
question of functional representation of ~ spaces has been considered by many 
authors but is still open. The main known results in this direction are contained 
in [5] and its references. The purpose of  the present note is to settle the question 

of  the structure of  the complemented subspaces of  re(F) if F is countably infinite 
(for this F we denote, as usual, m(F) by m). 

THEOREM. An infinite dimensional subspace X of m is complemented in m 
if  and only i f  X is isomorphic to m. 

The if  part of  the theorem is trivial since m is a ~ space. The theorem answers 
a question of  Pelczyfiski [5] (cf. also [2]). Pelczyfiski proved in [5] a result similar 
to the only i f  part of  the theorem for Iv, 1 __< p < o% and Co. We shall use in the 
proof  of  our theorem the following two results of  Pelczyfiski. 

LEMMA 1. Let X be an infinite dimensional ~3 space. Then X contains a 
subspace isomorphic to Co 

For a proof  see [5, p. 222] or [6]. 

LEMMA 2. Let X be a complemented subspace of m and assume that X has 
a subspace isomorphic to m. Then X is isomorphic to m. 
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For a proof  see [5, p. 222]. 
We do not use essentially new methods here. Lemma 5 below is closely 

related to the paper [1] of  Bessaga and Petczyfiski. In the proof  of  the theorem 
itself we use an idea of  Nakamura and Kakutani [4] (cf. also [7] and [8]). Our 
approach can be used to get some information on general ~ spaces. We do not, 
however, treat general ~ spaces here since it seems that the solution of  the problem 
of characterizing general ~ spaces will need other methods. Our reason for be- 
lieving this is the observation in [5, p. 223] that there are ~ spaces which are not 
isomorphic to re(F) for any F. 

By the w* topology of  m we understand the topology induced on m by the 
elements of  l~. For x e m and an integer i, x(0 denotes the i-th coordinate of  x. 
For x ~ m and ~ > 0 we put N(x,  ~) = {i; I x(i)] > 5} and M(x, 5) = {i; I x(i) l < 5}. 
The scalar field (real or complex) is denoted by R. 

Let {Xk}k~l be a sequence of elements in m such that for some LE~_A 3. 
constant K 

(1) 

Then for 
in the w* 

Proof. 

L~M_MA 
and such 

(2) 

II   xkll=<KsuPl'Z l f o r a l l  {2k}~=,cR,  n = l , 2 , . . . .  
k = l  k 

every bounded sequence {2k)~= 1 c R the series ~,~=12kXk converges 

topology to an element of norm < Ksupkl 2k I in m. 

Obvious. 

4. Let (Xk)~= l be a sequence of elements in m such that (1) holds 
that for some H > 0 

IIx ll--- H k-- 1 , 2 , . .  
Then for every 5 > 0 and 0 < H there is an index k such that 

(3) A~ = {h;M(Xk, e ) o N(xh, O) ~ ¢} 

is an infinite set. 

Proo£ By (1) we get that for every i, ~,kl Xk(i) [ < K and hence the intersection 
of  r > K/5 of sets of  the form N(xk,5) is empty. Assume that Ak, k = 1, ... ,r, are 
finite sets. Then A = ~.J~ = ~ Ak is a finite set. For h ¢ A, N(xh, 0) = 0 ~ = t N(Xk, 5) = ¢ 
but this contradicts (2). 

LEMMA 5. Let {Xk}k~l be a sequence of elements in m such that (1) holds 

and II xk II > 2for every k. Then there is a subsequence { x , J  of {Xk} such that 

(4) supl  l II gsupl  l, 
k k = l  k 



1967] ON COMPLEMENTED SUBSPACES OF m 155 

oo for every bounded sequence { k}k=l of scalars. 

Proof. The right inequality of  (4) is valid for every subsequence { x J  by 
Lemma 3, so we have to consider only the left inequality of  (4). 

By Lemma 4 there is an n~ so that B~ = {h; M(x,,,l/4)r3N(xh,7/4)#¢} is 
infinite. Next we choose an integer i~ such that } x,,,(il) 1= .>  2 Since ~ =  ~[x~(i~) [=<K 
there is an infinite subset C1 of  B 1 such that ~k ,C ,  Ix (i,)l < 1/4. The set 
M~ = M(x,,, 1/4)is an infinite set. Indeed, otherwise we would have an infinite 
number of  h ¢ B1 such that ] xh(i) ] _> 7/4 for some fixed i e M1 and this contradicts 
the fact that ~h] xh(i)} =< K. Let Xk,1 be the restriction Of Xk to M1, k = 1, 2, "'" 
(i.e. Xk,1 (i) is defined only for i ~ M1 and for these i, Xk,~(i) = x~(i)). By the definition 
of  M ,llx  > 7/4 for keB~ and hence for keC1. By applying Lemma 4 to 
{x~,~}~c, we get an n2eC~ such that 

B 2 = C1 ~ {h; M 1 (3 M(xn2 , 1/42) (3 N(xh, 7/4 -- 1142) ~ ¢) 

is an infinite set. Let i2 e M1 be such that I x~(i2) I -> 7/4 and let C2 be an infinite 
subset of B2 such that ~k ~C~ < 1/4 ~. Set M2 = M1 r3 M(x~, 1142) and 
Xk 2 the restriction of  xk to M2, k = 1, 2, ..-. Continuing inductively we get a sub- 
sequence {x , J  of  (xk} and a sequence of  integers ik such that 

(5) I x,~(it) I > 2 - 1/4 . . . . .  1/4 k-x > 5]3 

~o 

(6) ~' I x.k(i.i) l < 1/4"/ 
k = j + l  

(7) I x. (OI =< 1/4 
By (6) and (7)  ,  jIx.,Cij)l < 1/3. 
such that sup l -- 1 and let j be 

k=l 

for j > k  

~ be any sequence of  scalars Let now { ~}k = 1 
such that I ;~JI > 415. Then 

k = l  

k g j  

k~j 

Ix. (ij)l 1, 

and this concludes the proof  of  the lemma. 

Proof of the theorem. Let X be an infinite dimensional complemented subspace 
of  m. By Lemma 1 X contains a subspace isomorphic to co. By Lemma 5 it follows 
that there is a sequence {Xk}k~l in X and a constant K such that supk 12kl_< 

 k=l II --< gsupkJ2  I for every bounded sequence of  scalars { ~}~=1.2 ~ 
(The series ~,2kx k converges in the w* topology). 

Let {Nr}re r be an uncountable collection of  infinite subsets of the integers 
such that Np t'3 Nr is finite whenever fl ~ ~. The existence of  such a set is well 
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known (cf. [71, [8] and the references there). For each ? e F let X r be the subspace 
o f m  consisting of  the elements of  the form T. k , N 2 k X  k where {2k} k ,N~ is a bounded 
set of  scalars. Clearly every Xy is isomorphic to m. We shall prove that X r = X 
for some ? and this will conclude the proof  of  the theorem (by Lemma 2). 

Let  ?p:m ~ m / X  be the quotient map. Since X is complemented in m, m i X  is 
isomorphic to a subspace of  m. Hence there is a countable set of  functionals 
{fj}jo= 1 in ( m / X ) *  such that fj(u) = 0 for every j (u ~ m / X )  implies u = 0. Assume 

that for every ? ¢. F there is an xr = ~k~¢~ ;t~xk such that II II = ~ and s 
i.e. ~b(xr) ~ 0. We claim that for every choice of signs as and every finite set {xr,}~. = 1 

(8) U z K. 
i = l  

Indeed, by our assumption on the Nr  there is a finite set Mo such that 

N~, c M o U M ~ ,  i = 1, . . . ,n,  and Ms C3Mk = ~ f o r  i ~  k. Put, for i =  1, . . . ,n ,  

x~ ,=  Ys+ zi where ys=  ~k~uo2~'Xk and z~= ~,k~U,A~'Xk. Every Yi belongs to 
X and hence ~b(xT,) = ~(zs). Since II l ,z, II < K for every choice of  signs we 

get (8). 
From (8) it follows that for every f E (m/X)* ,  K IJflJ and in 

particular there is only a countable set of ~ s F such that f (~(x~))  y~ O. It follows 
that there is only a countable number of  ~ e F such that f j (~(xr))  ~ 0 for some j 
and this contradicts our choice of  the f j  and the assumption that q~(x~) ~ 0 for 

every ~. 

1 .  

spaces, 
2. 

Studia 
3. 

REFERENCES 

C. Bessaga and A. Pelczyfiski, On bases and unconditional convergence of series in Banach 
Studia Math. 17 (1958), 151-164. 
W. J. Davis and D. W. Dean, The direct sum of Banach spaces with respect to a basis, 
Math. 28 (1967), 209-219. 
M. M. Day, NormedLincar Spaces, Springer Verlag, Berlin 1958. 

v 
4. M. Nakamura and S. Kakutani, Banach limits and the Cech compactification of  a countable 

discrete set, Proc. Imp. Acad. Japan, 19 (1943), 224-229. 
5. A. Pe|czyfiski, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228. 
6. A. Petczy6ski, Banach spaces on which every unconditionally converging operator is 

weakly compact, Bull. Acad. Pol. Sci., 12 (1962), 641-648. 
7. A. Pelczyfiski and V. N. Sudakov, Remark on non-complemented subspaces of the space 

re(S), Colloq. Math. 9 (1962), 85--88. 
8. R. Whitley, Projecting m onto co, Amer. Math. Monthly 73 (1966), 285-286. 

THE HEnmsw UmV~RSl~ or JERUSAI~M. 


